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Abstract: - In this document, a hybrid procedure is constructed in order to predict the damage of a composite 

unidirectional laminate under random loading. This procedure is based on two pillars: a stiffness degradation 

model (SD-M) combined with an energy approach taking into account the effect of load ratio in addition to a 

system of equations generated by SSDQM method (Space State Differential Quadrature Method) which we 

have solved with a novel technic. The outputs of SSDQM method, previously serving for free vibration 

behavior analysis of composite structures, are used with those of SD-M model to predict damage failure of a 

composite laminate subjected to spectra loading. The results obtained correlate very well with experimental 

ones and an extensive comparison with other models validate the accuracy and convergence characteristics of 

this hybrid procedure. 
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1 Introduction 
The life of a structure can come to a sudden end or 

last longer, but only for a limited period. This latter 

case is usually accompanied by a reduction in yield, 

known as aging. Under a high load, a structure or 

component can deteriorate in one fell swoop, while 

it can actually withstand lower loads. On the other 

hand, the same structure or component can also be 

ruined under lower loads if they are applied over 

longer delays, either constant amplitude (static) or 

variable amplitude (fatigue). These loadings 

sustained by the mechanical structures are induced 

by external stresses (forces, thermal, accelerations, 

etc.). The phenomenon of degradation of the 

properties of a material due to the application of 

loads that fluctuate over time is called fatigue and 

the resulting ruin is called fatigue failure. 

Due to the complexity of fatigue damage process in 

composite materials, prediction of their fatigue life 

is of vital importance. But, a proper modeling of the 

damage evolution is the foundation for predicting 

the fatigue life of composite structures which 

enables an appropriate evaluating of structure’s 

performances in its early cycles of life and prevents 

catastrophic failures. Some authors were based on 

residual strength or stiffness, Yao and Himmel [1] 

predict residual strength caused by fatigue damage 

in glass and carbon fiber reinforced plastics. To 

predict and investigate the effect of high-stress 

peaks on fatigue life of carbon fiber reinforced 

plastics, Aghazadeh and Majidi [2] applied a 

residual strength. Another stiffness-based model for 

life prediction of Wu and Yao researchers [3] is also 

considered quite well model to predict residual 

fatigue life of composites. However, predictions of 

these models are noticeably divergent to 

experimental values and mostly yield a high percent 

of error in fatigue life prediction.  

In last decades, stiffness-based models [4-7] were 

another range of models that have been developed. 

The damage degree is quantified by measuring 

young’s modulus of the material. But, most of these 

models present especially two major deficiencies, 

firstly is a high number of parameters which 

requiring extensive experimental data to calculate 

them. While the second deficiency is their inability 

to simulate accurately the damage progress in its 

well-known three stages [7-9]. Additionally to the 

aforementioned shortcoming, most of these models 
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are validated for a specific typed of composite and 

are not evaluated in a wide range of loading levels 

[1, 10, 11]. 

On the other hand, vibration analysis of composite 

structures is also a big area of research encouraging 

researchers to ensure the usability, durability, and 

safety during composite structure’s lifetime. Many 

works were conducted in this trend [12-22], a 

number of models and methods have been 

developed. Among them stands out state space 

method combined with differential quadrature 

method briefly noted SSDQM. 

In this paper we aimed to resolve the discussed 

limitations of stiffness-based models throughout a 

hybrid damage prediction procedure. It consists of 

coupling a stiffness-based model with a SSDQM 

method while relying both on an energy approach 

for predicting damage rupture [23] and a well-

known Palmgreen Miner rule [24]. In the first place, 

the SSDQM is solved by a new proposed technic 

differently to ones found in the literature. Then a 

coupling algorithm is developed to survey damage 

progress of the composite laminate and 

consequently predict their damage rupture. 

Numerical validation of the hybrid procedure 

demonstrates that most of the predicted lifetimes 

lead to quantitatively better estimations.  

 

2 New technic for solving the 

SSDQM method 

In their works [14, 15, 21], authors combined state 

space method (SSM) [18-20] with differential 

quadrature method (DQM) [12-14] to establish an 

equation system (1) and each one proceeds in his 

own way to solve it.  

dΔ

dz
= M(k) Δ 

   

(1) 

Where: 

Δ = [𝑍   𝑈   𝑉   𝑊   𝑇𝑥𝑧   𝑇𝑦𝑧]
𝑇
, 

Z = [𝑍1   𝑍2   …   𝑍𝑁]
𝑇 , 

𝑀(𝑘) = [
0 𝑀1

(𝑘)

𝑀2
(𝑘)

0
], 

M1
(k)
= [

−ρω2𝐼 −g(1) λb𝐼

−g(1) c7𝐼 0
−λb𝐼 0 c8𝐼

]  ,                   

M2
(k)
= [

c9𝐼 c1g
(1) −c5λb𝐼

c1g
(1) (c6λb

2 − ρω2)I − c2g
(2) (c3 + c6)λbg

(1)

c5λb𝐼 −(c3 + c6)λbg
(1) (c4λb

2 − ρω2)I − c6g
(2)

] 

The components of the matrix ∆ are vectors defined 

as the state variables vector Z. N is the discretization 

number, k significant the kth ply of the laminate, I is 

the identity matrix and 𝑔𝑖𝑗
(𝑛)

 are the weighting 

coefficients [16] dependent on Chebyshev-Gauss-

Lobatto points xi [17]: 

xi =
a

2
[1 − cos

(i − 1)π

N − 1
] ,     i = 1, 2, … , N, 

The coefficients ci are defined and given in 

reference [17] which depends on the elastic material 

constants, ρ is the mass density and ω is a circular 

frequency. While 𝜆𝑏 is a constant parameter 

depending on an arbitrary positive integer n and is 

expressed as following:  𝜆𝑏= 
𝜋𝑛

𝑏
. 

For a specific problem, the boundary conditions at 

edges (x=0 and x=a) of the studied plate must be 

taken into consideration so that we can have a 

unique solution of the equation (1). By applying 

boundary conditions we add a subscript ‘q’ to 

equation (1) to indicate it: 

d

dz
Δq = Mq

(k)
Δq 

 

(2) 
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Explicit expressions of matrix M1q
(k)

 and M2q
(k)

 for 

each boundary condition case are given in appendix 

A. 

Many methods are envisaged in the literature to 

solve this system (2), Xu and Ding [22] used algebra 

rules and Cayley-Hamilton theorem to solve it. 

Direct use of global transfer matrix is one of the 

methods found in the literature [15-17] to solve this 

system. In this work, the global transfer matrix is 

used also to solve the system (2) but in combination 

with a Coupling Joint matrix proposed and noted JC. 

The novel technic developed here to solve the 

expression (2) is consisted on following steps: 

 First, the vector of state variables for the ply 

k is written as: 

∆i
(k)
=

{
 
 
 
 

 
 
 
 Zi

(k)

Ui
(k)

Vi
(k)

Wi
(k)

Txzi
(k)

Tyzi
(k)
}
 
 
 
 

 
 
 
 

 

                                                       

(3) 

Where i take ‘0’ (inferior face of the ply) or ‘1’ 

(superior face of the ply), 

 Second, the following formula is supposed 

to assure the continuity condition between 

two adjacent plies: JC. {
∆1
(𝑘)

∆0
(𝑘+1)

} = 0 where 

𝐽𝐶 = [𝐼 −𝐼] is named the Coupling Joint 

matrix. Noting that ‘‘I’’ is identity matrix 

with the same dimension as the length of the 

vector ∆. 

 Third, the loading conditions at the superior 

interface and the inferior one are expressed 

respectively like: 

 𝐽𝑠𝑢𝑝. ∆1
𝑚= 𝑓𝑠𝑢𝑝 and  𝐽𝑖𝑛𝑓 . ∆0

1= 𝑓𝑖𝑛𝑓.  

The inferior face doesn’t submit any 

mechanical forces where the vector force 

(stresses) finf is zero and consequently the 

matrix Jinf is equal to zero. On the other 

side, the superior face laminate’s is 

submitted to a bending loading where the 

vector force fsup and the matrix Jsup are 

written as following: 

fsup = {

qsup
0
0
} 

 

(4) 

Jsup = [
i1
0
0

0
0
0

 0
 0
 0

0
 0 
0

0
 i5
0

0
0
 i6

] 
        

(5) 

Where i1, i5 and i6 are the matrix identities having 

dimensions adequate to the state variables vectors 

lengths Z, Txz and Tyz respectively. We note also 

that Jinf matrix dimension is the same as matrix Jsup. 

The gathering of all above expressions of joint 

coupling matrix conduct to the general formula (6):   

J.∆=f (6) 

With: 

J = diag [Jinf JC1JC2… JCmJsup] ;  

f = [f𝑖𝑛𝑓
T 01 02…0mfsup

T ] where 0i is a zero vector of 

the ith ply; 

∆= [(∆0
(1)
)
T
(
∆1
(1)

∆0
(2)
)

T

… (
∆1
(m−1)

∆0
(m)

)

T

(∆1
(m)
)
T
] ; 

For any ply k of a composite laminate, the solution 

proposed of the matrix system (2) is written as 

follow:  

{
∆0
(k)

∆1
(k)
} = Mq

(k)
. ∆0
(k)

 
   

(7) 

Where  

𝑀𝑞
(𝑘)

= [
I
Tk
]  ;               

 Tk = exp (
hk

h
. 𝑀𝑞

(𝑘)
) ; 

The assembling of all plies of the laminate structure 

gives: 
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∆= M. ∆0  (8) 

With 

M = diag[M1 M2 … Mm-1 Mm] ; 

∆0= [(∆0
(1)
)𝑇 (∆0

(2)
)𝑇… (∆0

(𝑚−1)
)𝑇(∆0

(𝑚)
)𝑇]𝑇 ; 

By substituting the equation (8) into the equation (6) 

the system bellow (9) is obtained:  

J.M.∆0 = f (9) 

Finally, the resolution of this system (9) gives all 

state variables vectors in both superior and inferior 

faces of each laminate’s ply. 

 

 

3 Lifetime assessment procedure 

Together to the outputs given by the resolution of a 

system matrix developed in the previous section, the 

procedure that we aim to construct in this section is 

based also on both, a stiffness degradation model 

(noted SD-M) [25] and an algorithm used for an 

energy damage prediction model [23].   

Stiffness degradation models category is one of the 

most popular manor to predict damage of structures 

[4-7, 25-26] which quantify the extent of damage by 

measuring the Young's modulus of the material. The 

formula of (10) is used to construct the present 

procedure: 

ki
k0
= a2 − a1ln (

ni

N

1 −
ni

N

) 
    

(10) 

Where a1 and a2 are material parameters depending 

on the ultimate static force Fr, the stress ratio ri and 

the minimal force Fu for which the failure is not 

reached. 

The second amount on which this procedure 

depends is an energy approach [23] used to 

determine two material parameters ∅ and 𝛼 of the 

formula (11) in addition to lifetime at rupture Nmax.  

N =
Nmax

1 + e−∅(Ψ+α)
 

(11) 

Based on this amounts, the algorithm developed of 

the procedure is scheduled as follow: 

 Initially, a Ergodic, Gaussian, Stationary 

and random loading (noted EGSR) is 

considered and thanks to algorithm rainflow 

[23, 25] we obtain for each cycle ‘i' the 

mean value Fm,i and the amplitude Fa,i. 

These values obtained for an elementary 

cycle ‘i' are used as inputs of the SSDQM to 

calculate the six components of 

displacements and stresses on each point of 

the discretized laminate. Then, the 

maximum deflection 𝛿𝑚𝑎𝑥,𝑖 resulted on the 

midle of the laminate is used to assess initial 

stiffness k0,i through expression (12), 

consequently, the minimal deformation 

energy of this cycle ‘i' is deduced via 

expression (13).    

Fa,i = k0,i δmax,i (12) 

Ψmin,i =
Fa,i
2

2k0,i
 

 

(13) 

 In the second step, SD-M model (10) is used 

to find final stiffness kf,i for each cycle ‘i' 

which is used to determine the maximal 

deformation energy (14) of the considered 

cycle ‘i'. 

Ψmax,i =
Fa,i
2

2kf,i
 

(14) 

 Thirdly, we calculate the loading parameter 

𝜇𝑖 of each elementary cycle ‘i’ via 

expression (15). Therefore, by using the 

energy approach [23] the material 

parameters  ∅𝑖 and α𝑖 as well as the rupture 

lifetime Ni.  

μi = r,i ∗
Fm,i
Fmax,i

 
(15) 

 Finally, the well-known Palmgreen-Miner 

rule [24] is adopted to predict lifetime of the 

composite laminate examined: 
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T =
1

∑
ni

Ni

 
   

(16) 

To sum-up, figure (Fig. 1) show clearly the steps of 

the procedure developed above. 

 

4 Results and discussions 

The material used for the experimental study is a 

quasi-isotropic graphite/epoxy composite laminate 

[45/0/90]3S and the tests on which we based were 

performed by MTS 810 servo-hydraulic machine 

[25, 27]. Two variable amplitude fatigue 

experiments are conducted where four specimens 

are tested for each experimental case defined by the 

mean value Fm and the standard deviation 𝜎 of the 

loading. 

In order to validate the procedure developed in this 

work, two EGSR loadings were simulated 

identically to the experimental ones [25, 27]. In the 

first case, the mean value of a loading is Fm = 2000 

N and its standard deviation is 𝜎 = 500 N, while in 

the second case the mean value and the standard 

deviation taken are Fm = 1500 N and 𝜎 = 350 N 

respectively. Experimental lifetimes are given in 

Table 1 together with our model predictions and 

some model results of the literature [23, 25, 27-28]. 
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Table 1 Comparison between hybrid model predictions, experimental lifetimes and some literature’s models.  

Lifetime (in cycles) 
Loading 1: 

Fm=2000 (N) ; 𝜎 =500 (N) 

Loading 2: 

Fm=1500 (N) ; 𝜎 =350 (N) 

Experimental test [25] 4410 54517,5 

Energy model [23] 6504,9 57909 

Statistical model [27] 5900 58700 

Stiffness degradation model [25] 5100 52300 

Niesloney's first model [28] 1800 3000 

Niesloney's second model [28] 3700 38000 

Proposed hybrid procedure  6454,8 57883 

 

Hybrid procedure predictions are quite identical to 

energy model [23] results and are very close to both, 

statistical model [27] and stiffness degradation 

model [25] ones. Niesloney’s models [28] are too 

divergent in comparison with experimental tests 

[25] and with all models presented in the table 1. 

On the other side, we remark that the difference rate 

between our procedure predictions and experimental 

lifetimes is very acceptable, especially for the 

second experiment which doesn’t exceed 5 percent 

whereas in the first experiment this rate is quite 

higher. So despite that, all other models are also in 

the same order of magnitude as our hybrid model, 

but this difference can be explained from the fact 

that all these models used a linear cumulative 

damage rule to assess lifetimes which doesn’t take 

into account the load sequence and interaction 

effects. 

 

 

 

5 Conclusion 

Space state differential quadrature method is 

solved with a new technic, a series of stresses 

and deformations are obtained for each load’s 

cycle. The SSDQM is usually used to analyze 

free vibration behavior of different composite 

structures, in this work it was exploited in 

conjunction with one damage prediction model 

namely stiffness degradation model (SD-M 

model) and an energetic approach to predict 

damage rupture of a composite laminate.  

A satisfactory convergence of this hybrid 

procedure is verified through numerical 

comparison with other numerical models and 

also versus experimental tests. Hence, this 

procedure presents an ambition solution to 

monitor and predict damage evolution inside 

the laminate. 
 

Appendix A: 

 Clamped - Clamped (CC) : 
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M1q
(k)
=

[
 
 
 
 −𝜌𝜔2𝐼𝑁−2 −

1

𝑐7
𝑓𝐶𝐶 −𝑔𝐶𝐶

(1)
𝜆𝑏𝐼𝑁−2

−𝑔𝐶𝐶
(1)

𝑐7𝐼𝑁−2 0

−𝜆𝑏𝐼𝑁−2 0 𝑐8𝐼𝑁−2]
 
 
 
 

, 

M2q
(k)
=

[
 
 
 
 𝑐9𝐼𝑁−2 𝑐1𝑔𝐶𝐶

(1)
(𝑐6𝜆𝑏

2 − 𝜌𝜔2)𝐼𝑁−2 −𝑐5𝜆𝑏𝐼𝑁−2

𝑐1𝑔𝐶𝐶
(1)

−𝑐2𝑔𝐶𝐶
(2)
−
𝑐1
2

𝑐9
𝑓𝐶𝐶 (𝑐3 + 𝑐6)𝜆𝑏𝑔𝐶𝐶

(1)

𝑐5𝜆𝑏𝐼𝑁−2 −(𝑐3 + 𝑐6)𝜆𝑏𝑔𝐶𝐶
(1)

(𝑐4𝜆𝑏
2 − 𝜌𝜔2)𝐼𝑁−2 − 𝑐6𝑔𝐶𝐶

(2)
]
 
 
 
 

,

 

The elements 𝑓𝐶𝐶, 𝑔𝐶𝐶
(1)

 and 𝑔𝐶𝐶
(2)

are expressed as 

following: 

 𝑓𝐶𝐶𝑖𝑗 = 𝑔𝑖1
(1)
𝑔1𝑗
(1)
+ 𝑔𝑖𝑁

(1)
𝑔𝑁𝑗
(1)
;                   

𝑔𝐶𝐶𝑖𝑗
(𝑟)

= 𝑤𝑖𝑗
(𝑟)

      (i, j = 2, 3, …, N-1) and (r=0 or 1). 

 Clamped – Simply support (CS) : 

M1q
(k)
=

[
 
 
 
 −𝜌𝜔2𝐼𝑁−2 −

1

𝑐7
𝑓1𝐶𝑆 −𝑔𝐶𝑆

(1)
𝜆𝑏𝐼𝑁−2

−[𝑔𝐶𝑆
(1)
]𝑇 𝑐7𝐼𝑁−1 0

−𝜆𝑏𝐼𝑁−2 0 𝑐8𝐼𝑁−2 ]
 
 
 
 

, 

M2q
(k)
=

[
 
 
 
 𝑐9𝐼𝑁−2 𝑐1𝑔𝐶𝑆

(1)
(𝑐6𝜆𝑏

2 − 𝜌𝜔2)𝐼𝑁−1 −𝑐5𝜆𝑏𝐼𝑁−2

𝑐1[𝑔𝐶𝑆
(1)
]𝑇 𝑐2ℎ −

𝑐1
2

𝑐9
𝑓′1𝐶𝑆 (𝑐3 + 𝑐6)𝜆𝑏[𝑔𝐶𝑆

(1)
]𝑇

𝑐5𝜆𝑏𝐼𝑁−2 −(𝑐3 + 𝑐6)𝜆𝑏𝑔𝐶𝑆
(1)

(𝑐4𝜆𝑏
2 − 𝜌𝜔2)𝐼𝑁−2 − 𝑐6𝑔𝐶𝑆

(2)
]
 
 
 
 

,

 

Where : 

ℎ = 𝑓′𝑁𝐶𝑆 − 𝑔′𝐶𝑆
(2)

  

 𝑓1𝐶𝑆𝑖𝑗 = 𝑔𝑖1
(1)𝑔1𝑗

(1)        (𝑖, 𝑗 = 2, 3, … ,𝑁 − 1), 

𝑔𝐶𝑆
(2) = 𝑔𝐶𝐶

(2), 

 𝑓′𝑁𝐶𝑆𝑖𝑗 = 𝑔𝑖𝑁
(1)𝑔𝑁𝑗

(1),               𝑔′𝐶𝑆𝑖𝑗
(2)

= 𝑤𝑖𝑗
(2),                 

 𝑓′1𝐶𝑆𝑖𝑗 = 𝑔𝑖1
(1)
𝑔1𝑗
(1)
                      (𝑖, 𝑗 = 2, 3, … ,𝑁), 

𝑔𝐶𝑆𝑖𝑗
(1)

= 𝑤𝑖𝑗
(1)(𝑖 = 2, 3,… ,𝑁 − 1 𝑎𝑛𝑑  𝑗 = 2,… ,𝑁). 

 Simply support – Simply support (SS) : 

M1q
(k)
= [

−𝜌𝜔2𝐼𝑁−2 −𝑔𝑆𝑆
(1)

𝜆𝑏𝐼𝑁−2

−[𝑔𝑆𝑆
(1)]𝑇 𝑐7𝐼𝑁−2 0

−𝜆𝑏𝐼𝑁−2 0 𝑐8𝐼𝑁−2

], 

M2q
(k)
=

[
 
 
 𝑐9𝐼𝑁−2 𝑐1𝑔𝑆𝑆

(1) −𝑐5𝜆𝑏𝐼𝑁−2

𝑐1[𝑔𝑆𝑆
(1)]𝑇 (𝑐6𝜆𝑏

2 − 𝜌𝜔2)𝐼 + 𝑐2(𝑓 − 𝑔
(2)) (𝑐3 + 𝑐6)𝜆𝑏[𝑔𝑆𝑆

(1)]𝑇

𝑐5𝜆𝑏𝐼𝑁−2 −(𝑐3 + 𝑐6)𝜆𝑏𝑔𝑆𝑆
(1)

(𝑐4𝜆𝑏
2 − 𝜌𝜔2)𝐼𝑁−2 − 𝑐6𝑔𝑆𝑆

(2)
]
 
 
 
,

 

Where  

 𝑓𝑆𝑆𝑖𝑗 = 𝑔𝑖1
(1)𝑔1𝑗

(1) + 𝑔𝑖𝑁
(1)𝑔𝑁𝑗

(1)      (𝑖, 𝑗 = 1, 2, … ,𝑁), 

𝑔𝑆𝑆𝑖𝑗
(1) = 𝑤𝑖𝑗

(1)  (𝑖 = 2, 3, … , 𝑁 − 1 𝑎𝑛𝑑 𝑗 = 1,… ,𝑁), 

 𝑔𝑆𝑆
(2) = 𝑔𝐶𝐶

(2), 

 Clamped – Free (CF) : 
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M1q
(k)
= [

−𝜌𝜔2𝐸1 − 𝑓1𝐶𝐹 −𝑔1𝐶𝐹
(1)

𝜆𝑏𝐸1

−𝑔2𝐶𝐹
(1)

𝑐7𝐼𝑁−2 0

−𝜆𝑏𝐼𝑁−1 0 𝑐8𝐼𝑁−1

], 

M2q
(k)
= [

𝑐9𝐸2 𝑀2,12 𝑀2,13

𝑐1[𝑔1𝐶𝐹
(1)
]𝑇 𝑀2,22 𝑀2,23

𝑐5𝜆𝑏𝐸2 𝑀2,32 𝑀2,33

], 

Where  

𝑀2,12 = 𝑐1 [𝑔2𝐶𝐹
(1)
]
𝑇
+
𝑐2𝑐9
𝑐1

𝐸3,    

𝑀2,13 = −
𝑐1
𝜆𝑏
𝑓𝑁𝐶𝐹 − 𝑐5𝜆𝑏𝐼𝑁−1 −

𝑐2𝑐9
𝜆𝑏𝑐1

𝐸4, 

𝑀2,22 = (𝑐6𝜆𝑏
2 − 𝜌𝜔2)𝐼𝑁−2 + 𝑐2(𝑓𝐶𝐹 − 𝑔𝐶𝐹

(2)
), 

𝑀2,23 = (𝑐3 + 𝑐6)𝜆𝑏𝑔2𝐶𝐹
(1)

+
𝑐2
𝜆𝑏
(𝑓�̅�𝐶𝐹 − 𝑓𝑁𝐶𝐹

∗ ), 

𝑀2,32 = −(𝑐3 + 𝑐6)𝜆𝑏[𝑔2𝐶𝐹
(1)
]𝑇 +

𝑐2𝑐5
𝑐1

𝜆𝑏𝐸3,  

𝑀2,33 = (𝑐3 + 𝑐6)𝑓𝑁𝐶𝐹 + (𝑐4𝜆𝑏
2 − 𝜌𝜔2)𝐼𝑁−1

− 𝑐6𝑔
′
𝐶𝐹

(2)
−
𝑐2𝑐5
𝑐1

𝐸4. 

𝐸1 = [
0 0
𝐼𝑁−2 0

],          𝐸2 = [
0 𝐼𝑁−2
0 0

], 

𝐸3 = [
0(𝑁−2)𝑥(𝑁−2)

𝛼𝑔
],          𝐸4 = [

0(𝑁−2)𝑥(𝑁−1)
𝛼𝑓𝑁

], 

𝑓1𝐶𝐹𝑖𝑗 = 𝑔𝑖1
(1)𝑔1𝑗

(1)    (𝑖 = 1, 2 … ,𝑁 − 1 𝑎𝑛𝑑 𝑗

= 2,3,… ,𝑁), 

𝑔1𝐶𝐹𝑖𝑗
(1) = 𝑤𝑖𝑗

(1)                   (𝑖 = 1, 2,… ,𝑁 − 1 𝑎𝑛𝑑 𝑗

= 2,3,… ,𝑁 − 1), 

𝑔2𝐶𝐹𝑖𝑗
(1) = 𝑤𝑖𝑗

(1),                     𝑓�̅�𝑖𝑗 = 𝑔𝑁1
(2)𝑔𝑁𝑗

(1),      

 𝑓𝑁𝑖𝑗
∗ = 𝑔𝑖𝑁

(1)𝑔𝑁𝑁
(1)𝑔𝑁𝑗

(1) (𝑖 = 2,… ,𝑁 − 1 𝑎𝑛𝑑  𝑗

= 2,3,… ,𝑁), 

 𝑓𝑁𝐶𝐹𝑖𝑗 = 𝑔𝑖𝑁
(1)𝑔𝑁𝑗

(1)                (𝑖, 𝑗 = 2,3,… ,𝑁), 

𝛼𝑔 = [𝑔𝑁2
(1)
 𝑔𝑁3
(1)
… 𝑔𝑁(𝑁−1)

(1)
],                           

𝛼𝑓𝑁 = [𝑔𝑁2
(1)
 𝑔𝑁3
(1)
… 𝑔𝑁𝑁

(1)
], 

 𝑓𝐶𝐹 =  𝑓𝐶𝐶 ,                   𝑔𝐶𝐹
(2)
= 𝑔𝐶𝐶

(2)
,    

 𝑓𝑁𝐶𝐹 =  𝑓′𝑁𝐶𝑆,                     𝑔′𝐶𝐹
(2)
= 𝑔′𝐶𝑆

(2)
. 

 

References: 

[1] W.X. Yao, N. Himmel, A new cumulative 

fatigue model for fiber-reinforced plastics, 

Compos. Sci. Technol. 60 (2000) 59–64. 

[2] J. Aghazadeh Mohandesi, B. Majidi, Fatigue 

damage accumulation in carbon/epoxy 

laminated composites, Mater. Des. 30 (2009) 

1950–1956. 

[3] F. Wu, W. Yao, A fatigue damage model of 

composite materials, Int. J. Fatigue 32 (1) 

(2010) 134–138. 

[4] Y.-M. Jen, Y.-H. Yang, A study of two-stage 

cumulative fatigue behavior for CNT/ epoxy 

composites, Procedia Engineering 2 (1) 

(2010) 2111–2120. 

[5] R.B. Toumi, J. Renard, M. Monin, P. 

Nimdum, Fatigue damage modelling of 

continuous E-glass fibre/epoxy composite, 

Procedia Engineering 66 (2013) 723–736.  

[6] W. Zhang, Z. Zhou, B. Zhang, S. Zhao, A 

phenomenological fatigue life prediction 

model of glass fiber reinforced polymer 

composites, Mater. Des. 66 (2015) 77–81. 

[7] S. Shiri, M. Yazdani, M. Pourgol-

Mohammad, Fatigue life prediction of 

polymeric composites based on the 

simultaneous degradation of stiffness and 

strength under two-stage loading, Modares 

Mechanical Engineering 14 (14) (2015) 137–

142 (In Persian). 

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS 
DOI: 10.37394/232011.2020.15.27

Mohammed Bousfia, 
Mohammed Aboussaleh, Brahim Ouhbi

E-ISSN: 2224-3429 255 Volume 15, 2020



[8] H. Mao, S. Mahadevan, Fatigue damage 

modelling of composite materials, Compos. 

Struct. 58 (4) (2002) 405–410. 

[9] K.-W. Kang, D.-M. Lim, J.-K. Kim, 

Probabilistic analysis for the fatigue life of 

carbon/ epoxy laminates, Compos. Struct. 85 

(3) (2008) 258–264. 

[10] S. Shiri, M. Pourgol-Mohammad, M. 

Yazdani, Prediction of Remaining Fatigue 

Cycles in Composite Materials Under 

Uncertainty, ASCE-ASME Journal of Risk 

and Uncertainty in Engineering Systems, Part 

B, Mechanical Engineering, 

2015http://dx.doi. org/10.1115/1.4031037.  

[11] T. Peng, Y. Liu, A. Saxena, K. Goebel, In-

situ fatigue life prognosis for composite 

laminates based on stiffness degradation, 

Compos. Struct. 132 (2015) 155–165.  

[12] R. Bellman, BG. Kashef, J. Casti. Differential 

quadrature: a technique for the rapid solution 

of non-linear partial differential equations. J 

Comput Phys; 10 (1972) : 40–52. 

[13]  CW. Bert, SK. Jang, AG. Striz. Nonlinear 

bending analysis of orthotropic rectangular 

plates by the method of differential 

quadrature. Comput Mech; 5 (1989) : 217–

226. 

[14]  CW. Bert, M. Malik. Transient analysis of 

gas- ubricated journal bearing systems by 

differential quadrature. ASME J Tribol; 119 

(1997) :91–99. 

[15]  WQ. Chen, CF. Lv, ZG. Bian. Elasticity 

solution for free vibration of laminated 

beams. Compos Struct; 62 (2003) : 75–82.  

[16] C. Shu, BE. Richards. Application of 

generalized differential quadrature to solve 

two-dimensional incompressible. Navier–

Stokes equations. Int J Numer Meth Fluids; 

15 (1992): 791–8. 

[17] W.Q. Chen, C.F. Lue.  3D free vibration 

analysis of cross-ply laminated plates 

with one pair of opposite edges simply 

supported. Comp Struct; 69 (2005): 77–87. 

[18] LY. Bahar. Transfer matrix approach to 

layered systems. J Eng Mech; 98 (1972): 

1159–72. 

[19] WQ Chen, JB Cai and Ye GR. Exact 

solutions of cross-ply laminates with bonding 

imperfections. AIAA J; 41 (2003): 2244–50. 

[20] WQ Chen, KY Lee. Three-dimensional exact 

analysis of angle-ply laminates in cylindrical 

bending with interfacial damage via state 

space method. Compos Struct; 64 (2004): 

275–83. 

[21] WQ Chen WQ, CF Lüe. 3D free vibration 

analysis of cross-ply laminated plates with 

one pair of opposite edges simply supported. 

Compos Struct; 69 (2005): 77–87. 

[22] Xu Rongqiao, H Ding. Two-dimensional 

solutions for orthotropic materials by the state 

space method. Compos Struct; 78 (2007): 

325-336. 

[23] B. Mohammed, A. Mohamed and O. Brahim. 

Fatigue life prediction of composite laminate 

under random loading service: An energy 

approach. Materials Today: Proceedings. 

https://doi.org/10.1016/j.matpr.2020.05.091. 

[24] Yung-Li Lee, Tana Tjhung, Chapter 3 – 

Rainflow Cycle Counting Techniques. 

Metal Fatigue Analysis Handbook 2012, pp. 

89–114. 

[25] M. BOUSFIA et al. fatigue life prediction for 

composite materials under Ergodic Gaussian 

and Stationary Random (EGSR) loads. 

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS 
DOI: 10.37394/232011.2020.15.27

Mohammed Bousfia, 
Mohammed Aboussaleh, Brahim Ouhbi

E-ISSN: 2224-3429 256 Volume 15, 2020

https://doi.org/10.1016/j.matpr.2020.05.091


Composites: Mechanics, Computations, 

Applications: An International Journal; 2017; 

DOI:10.1615/CompMechComputApplIntJ.v8.

i3.10. 

[26] A. Shirazi, A. Varvani-Farahani, A stiffness 

degradation based fatigue damage model for 

FRP composites of (0/θ) laminate systems, 

Appl. Compos. Mater. 17 (2) (2010) 137–

150.  

[27] M. Aboussaleh, R. Boukhili. Life prediction 

for composite laminates submitted 

to service loading spectra. Polym. Compos. 

19 (1998) 241–245. 

[28] A. Niesloney, M. Böhom, Mean stress effect 

correction using constant stress ratio S-N 

curves, Int. J. Fatigue (2013), 

https://doi.org/10.1016/j. 

ijfatigue.2013.02.2019. 

 

Contribution of individual authors to 

the creation of a scientific article  
 

Mohammed BOUSFIA: software, formal analysis, 

methodology and investigation. 

Mohamed ABOUSSALEH: supervision, project 

administration and methodology. 

Brahim OUHBI: validation and visualization. 

 

Creative Commons Attribution 

License 4.0 (Attribution 4.0 

International , CC BY 4.0) 

 
This article is published under the terms of the 

Creative Commons Attribution License 4.0 

https://creativecommons.org/licenses/by/4.0/deed.en

_US 

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS 
DOI: 10.37394/232011.2020.15.27

Mohammed Bousfia, 
Mohammed Aboussaleh, Brahim Ouhbi

E-ISSN: 2224-3429 257 Volume 15, 2020

https://doi.org/10.1016/j
https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US



